

Federated Prototypical Learning for Automated Antibiogram Interpretation in Ultra-Low-Resource Settings

Nina Mainusch¹, Sai Praneeth Karimireddy², Louis Laroche³, Nada Malou³, Antoine Descamps³, Soriya Thach³, Martin Jaggi¹, Mary-Anne Hartley¹ ¹EPFL; ²UC Berkeley; ³MSF

1 INTRODUCTION

Antibiogram

- determines the effectiveness of antibiotics
- minimizing the risk of antibiotic resistance
- MSF developed Antibiogo [4] to automate procedure

PROBLEM

- Antibiotic discs change, due to new antibiotics and changes in resistance patterns. We need continuous learning.
- Sensitive data where privacy needs to be preserved. Solution: classical federated learning (FL)
- > But FL assumes a large communication budget, communication and client stability. Not interpretable.
- Antibiogo needs to function in ultralow resource settings. AIM

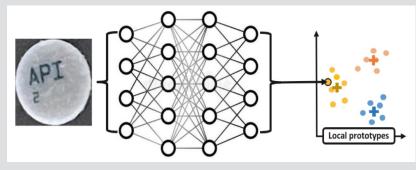
Adapt FL to

- Continuously learn to improve antibiogram interpretation (few-shot learning)
- Low communication costs
- Interpretability
- Modularity

2 METHOD: PROTOTYPICAL LEARNING

Prototypical learning involves creating a representative example for each class of data points in a given dataset and classifying new data points based on their similarity to the prototypes [5].

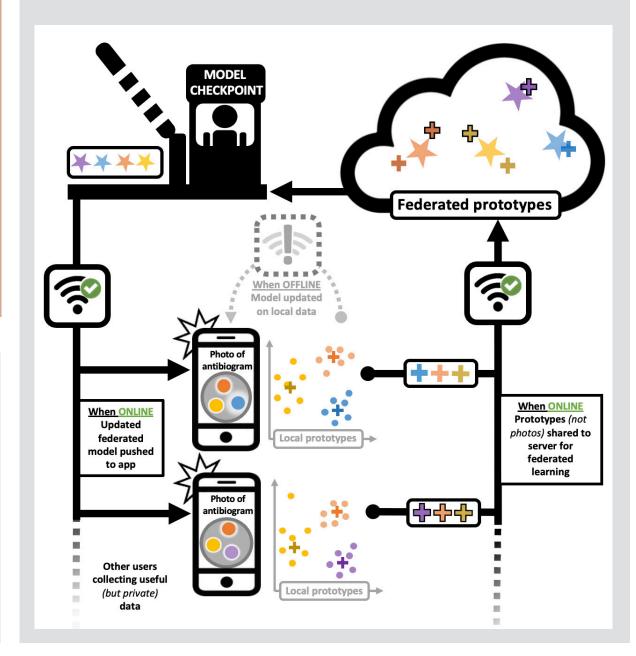
OUR TASK: to recognize the text of an antibiogram disc.



3 METHOD: FEDERATED PROTOTYPICAL LEARNING

 Federated learning involves training a model on decentralized data that remains on local devices, rather than being transferred to a central server, thereby providing data privacy.

Here we adapt it to only communicate the **prototypes** of each class.



4 RESULTS

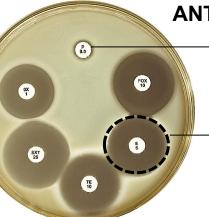
learning

5 CONCLUSION

- Our work is a first step toward ultralow resource -efficient FL able to handle intermittent updates and continual learning.

REFERENCES

- 4



ANTIBIOGRAM

Bacteria grows close to antibiotic disc = RESISTANT

Inhibition of growth = SUSCEPTIBLE

AIM ACHIEVED using prototypical learning

- ✓ Ultra low communication cost (we only need to communicate the prototype once)
- ✓ Modularity

AIM ACHIEVED using FEDERATED prototypical

- Continuous learning
- Interpretability
- Data Privacy

✓ Federated prototypical learning generalizes as least as well as standard supervised learning to unseen classes: 71.2 (+-0.8) vs. 69.6 (+-2.5) on EMNIST.

 Since only the prototypes need to be communicated, the communication costs are reduced by >10.000% compared to classical FL.

✓ 3 datapoints per class are sufficient to approximate the prototype of a class.

- Novel and impactful problem setting for FL.
- Few-shot learning is possible but improvable.

M. Pascucci, G. Royer, J. Adamek, M. Al Asmar, D. Aristizabal, L. Blanche, A. Bezzarga, G. Boniface-Chang, A. Brunner, C. Curel, G. Dulac-Arnold, R. M. Fakhri, N. Malou, C. Nordon, V. Runge, F. Samson, E. Sebastian, D. Soukieh, J.-P. Vert, C. Ambroise, and M.-A. Madoui. Al-based mobile application to fight antibiotic resistance. Nat Commun 12, page 1173, 2021. J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. CoRR,abs/1703.05175, 2017.